教学资源
当前位置:首页 > 教学资源

有理数教案(精选多篇)

时间:2024-02-16 20:54:33
有理数教案(精选多篇)[此文共5131字]

第一篇:《有理数》教案2

《有理数》教案

教学目标

1、知识目标 :借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数.

2、能力目标 :能应用正负数表示生活中具有相反意义的量.

3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系. 教学重难点

重点:理解有理数的意义.

难点:能用正负数表示生活中具有相反意义的量.

教学过程

一、 创设情境、提出问题

某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础 分均为0分.两个队答题情况见书上第23页.

二、分析探索、问题解决

分组讨论扣的分怎样表示?

用前面学的数能表示吗?

数怎么不够用了?

引出课题.

讲授正数、负数、有理数的定义.

用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数. 启发学生再从生活中例举出用负数表示具有相反意义的 数.

三、巩固练习

1、用正数或负数表示下列各题中的数量:

(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;

(2)球赛时,如果胜2局记作+2,那么-2表示______;

(3)若-4万表示亏损4万元,那么盈余3万元记作______;

(4)+150米表示高出海平面150米,低于海平面200米应记作______.

分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.

2、下面说法中正确的是().

a.“向东5米”与“向西10米”不是相反意义的量;

b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;

c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;

d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.

三、小结回顾、纳入体系

学生交流回顾、讨论总结,教师补充如下:

概念:正数、负数、有理数.

分类:有理数的分类:两种分法.

应用:有理数可以用来表示具有相反意义的量.

第二篇:有理数减法教案

一、课题2.4有理数的减法

二、教学目标

1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

2.培养学生观察、分析、归纳及运算能力.

三、教学重点

有理数减法法则

四、教学难点

有理数减法法则

五、教学用具

三角尺、小黑板、小卡片

六、课时安排

1课时

七、教学过程

(一)、从学生原有认知结构提出问题

1.计算:

(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

2.化简下列各式符号:

(1)-(-6);(2)-(+8);(3)+(-7);

(4)+(+4);(5)-(-9);(6)-(+3).

3.填空:

(1)______+6=20;(2)20+______=17;

(3)______+(-2)=-20;(4)(-20)+______=-6.

在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.

(二)、师生共同研究有理数减法法则

问题1(1)(+10)-(+3)=______ ;

(2)(+10)+(-3)=______.

教师引导学生发现:两式的结果相同,(更多内容请访问首页:wwW.)即 (+10)-(+3)=(+10)+(-3).

教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性? 问题2(1)(+10)-(-3)=______ ;

(2)(+10)+(+3)=______.

对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?

(2)的结果是多少?

于是,(+10)-(-3)=(+10)+(+3).

至此,教师引导学生归纳出有理数减法法则:

减去一个数,等于加上这个数的相反数.

教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.减数变号(减法============加法)

(三)、运用举例变式练习

例1计算:

(1)(-3)-(-5);(2)0-7.

例2计算:

(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).

通过计算上面一组有理数减法算式,引导学生发现:

在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数.

例3世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?

阅读课本63页例3

(四)、小结

1.教师指导学生阅读教材后强调指出:

由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

(五)、课堂练习

1.计算:

(1)-8-8; (2)(-8)-(-8);(3)8-(-8);(4)8-8;

2.计算:

(1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-5 ……此处隐藏1038个字……号,把大的绝对值减去小的绝对值)

=-0.8

例3(教科书的例2)教师在算出红队的净胜球数后,学生自己算黄队和蓝队的净胜球数

下面请同学们计算下列各题以及教科书第23页练习第1与第2题

(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

学生书面练习,四位学生板演,教师巡视指导,学生交流,师生评价。

(四)小结

1.本节课你学到了什么?

2.本节课你有什么感受?(由学生自己小结)

(五)作业设计

1.计算:

(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);

(5)67+(-73);(6)(-84)+(-59);(7)-33+48;(8)(-56)+37.

2.计算:

(1)(-0.9)+(-2.7); (2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78;

(5)7+(-3.04);(6)(-2.9)+(-0.31)(7)(-9.18)+6.18; (8)(-0.78)+0.

3.用“>”或“<”号填空:

(1)如果a>0,b>0,那么a+b ______0;

(2)如果a<0,b<0,那么a+b ______0;

(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

(4)如果a<0,b>0,|a|>|b|,那么a+b ______0

(六)板书设计

1.3.1有理数加法

一、加法法则二、例1例2例3

1、

2、

3、

第五篇:有理数的减法教案1

1.3.2 有理数的减法(1)

第1课时

三维目标

一、知识与技能

(1)理解并掌握有理数的减法法则,能进行有理数的减法运算.

(2)通过把减法运算转化为加法运算,让学生了解转化思想.

二、过程与方法

经历探索有理数的加法运算律的过程,培养学生的观察能力和思维能力.

三、情感态度与价值观

体会有理数加法运算律的应用价值.

教学重、难点与关键

1.重点:掌握有理数减法法则,能进行有理数的减法运算.

2.难点:探索有理数减法法则,能正确完成减法到加法的转化.

3.关键:正确完成减法到加法的转化.

四、教学过程

一、复习提问,新课引入

1.计算.

(1)(-2.6)+(-3.1)(2)(-2)+3

2.填空.

(1)__+6=20(2)20+______=17

(3)___+(-2)=5(4)(-20)+___=-6

五、新授

实际问题中有时还要涉及有理数的减法,例如,某地一天的气温是-3℃~4?℃,这天的温差(最高气温减最低气温,单位:℃)就是4-(-3),?这里用到正数与负数的减法,你会计算它吗?(鼓励学生探索)

可以先从温度计看出4℃比-3℃高7℃.

另外,我们知道减法和加法是互为逆运算.计算4-(-3),?就是要求出一个数x,使x与-3的和等于4,因为7+(-3)=4,所以

4-(-3)=7①

另外4+(+3)=7,②

比较①、②两式,你发现了什么?

发现:4-(-3)=4+(+3).

这就是说减法可以转化为加法,如何转化呢?

减-3相当于加3,即加上“-3”的相反数.

比较上面的式子,计算下列各式:

50-20=50+(-20)=

50-10=50+(-10)=

50-0=50+0=

50-(-10)=50+10=

50-(-20)=50+20=

这些数减-3的结果与它们加+3的结果仍然相同.

归纳:通过上述讨论,得出:

有理数的减法可以转化为加法来进行.“相反数”是转化的桥梁.有理数减法法则:

减去一个数,等于加上这个数的相反数.

用式子表示为:a-b=a+(-b).

注意:减法在运算时有 2 个要素要发生变化。

1减号变加号

2减数变相反数

例4:计算:

(1)-3-(-5)(2)7.2- (-4.8)

(3)0 – 8(4)(-5) -0

分析:以上是有理数的减法,按减法法则,把减法转化为加法.

11-3(--5)2411113例3:计算: (1) -0.257-4.47(4)(-3)-5=(-3)+(-5)=-8 24244例2:计算:(1) (-2.5) – 5.9(2)

强调:减号变加号、减数变相反数,必须同时改变,(4)?题中减数的符号为“+”号,省略没有定.

综合运用:课本25页,6题

六、课堂练习

1:计算:

(1) 6-9(2)(+4)-(-7)

(3)(-5)-(-8)(4)0-(-5)

(5)(-2.5)-5.9(6)1.9-(-0.6)

2、列式计算:

(1)比2 ℃低8 ℃的温度

(2)比-3 ℃低6 ℃的温度

3、课本26页7、8、10题略

2.差数一定比被减数小吗?

提示:不一定,例如(-7)-(-5)=(-7)+(+5)=-2,-2>-7.

七、课堂小结

引进负数后,任意两个有理数都可以求出它们的差,结果可能为正数(大数减去小数),也可能为负数(小数减去大数),还可能为0(相等的两数相减),?学习有理数减法,关键在于处理好两个“变”字;(1)?改变运算符号──即把减法转化为加法.(2)改变减数的符号──即减数变为它的相反数,?这两个“变”要同时进行,而被减数不变.

八、作业布置

1.课本第25页至第26页,习题1.3第3、4、11、12题.

九、板书设计:

1.3.2 有理数的减法(1)

第三课时

1、有理数的减法可以转化为加法来进行.“相反数”是转化的桥梁.有理数减法法则:

减去一个数,等于加上这个数的相反数.

用式子表示为:a-b=a+(-b).

十、课后反思

《有理数教案(精选多篇)[此文共5131字].doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

Copyright © 2024 尹破魔博客 www.pomosem.com 版权所有