从徐子沛的《大数据》中得到的感悟
数据,对于我们现代社社会来说,已经是再熟悉不过了。大量化(volume)、多样化(variety)、快速化(velocity)和大价值(value)。这四个v就是大数据的基本特征。每天我们都不得不和数据打交道,比如我们平常所说得“眼观六路,耳听八方,”就是生活中一个很好的的收集数据的例子。还有,在我们平时的学习中,我们对于一些学习上的数据的整理等等。可以说,数据已经成为了我们的影子一样,无时无刻的在我们的身边活动。
拿到《大数据》这本书时,吸引我的不是书评的内容,而是书的封面上的一句话“除了上帝,任何人都可以用数据说话。”也就是说,上帝可以不用数据来说话,但是,作为一个平常人,我们做事,言论等都必须用数据来说话。用数据论来证我们的观点正确性。
那么数据真的就是那么重要吗?其实不然,数据果真有那么的重要。作者在书中大量应用世界头号强国美国的例子来说明美国是如何利用数据以及数据在美国人的利用下,是如何造福美国人的。使得美国人走上了民主、发展的道路。书中还引用了大量的利用数据的案例,以及利用数据会有什么样的后果。当然,作者在书中也很明确的表达了自己观点,也就是数据要被人利用,利用的好了,造福人类,否则,祸害无穷。
毫无疑问,我们正处在一个真正意义的大数据时代。但是,大数据浪潮的来龙去脉如何?数据技术变革何以能推动政府信息的公开、透明和社会公正?又何以给我们带来无限的商机,既便利又危及我们
每个人的生活?《大数据》给了我们一个很好的答案。在拿到徐子沛《大数据》时,与其说这是个新概念,还不如说就是一个现实。信息技术的迅速发展和普遍应用,存储能力的膨胀,网络传输的便捷,必然产生巨大的数据量。即使是一个公司,经过多年的积累,产生的数据也是惊人的。每天繁多的数据,这就是要求企业要很好地存储数据,利用数据通过数据,使得数据说话,提升企业的业绩和知名度。对于一个企业来说,比较实际的倒是关注一下企业微观大数据,如何充分利用现有的、能够得到的和自己创造的数据,采用《大数据》里提及的新技术、新方法、新理念,筛选、组织、关联、分析,精细化管理和挖掘数据,探索规律性的东西,指导企业活动。 尽可能多的获取数据,首先是要有心,对于公司员工来说,随时随地注意收集客户数据、需求数据、产品数据、市场数据、资源数据等,经过整理,把它变成公司的数据资产;然后是要有据,信息与数据最大的不同,就是数据是能够度量或者确定的信息,不能“毛估估”,收集数据要精细化,要准确;其次要有序,数据需要存储,更加需要整理,单个数据没有很大意义,静止的数据也没有很大意义,有价值的数据是流动的、与其他数据交互作用的。一个大杂烩的数据库,在需要时让人找不到北,没有任何意义。再次,需要技术支持,大量的数据如何检索,如何关联,单靠人脑是不行的,需要建立基于特定理论的数据处理系统来分析管理。对于一个企业,最理想的是建立一个类似人类神经系统的数据管理系统,采用各种信息终端采集内部和外部信息,通过分析、归纳、筛选,形成管理数据,某些数据可以成为系统的“本
能”,一旦触发能够自动做出反应;某些数据可以成为组合信息提交大脑综合分析,作出决策和反应。 数据应该为人服务,这是一条基本原则。在大数据时代始终发挥人的主观能动性,采用先进的理念和技术驾驭数据,让人们生活更方便,工作效率更高,劳动强度降低,为社会创造更多的物质财富和精神财富。
《大数据》是一本视野独特的书。它以数据为轴线,描绘了美国走过的改革创新的过程,行文如流水,引人入胜。书中,我读到的不是大数据处理技术,更多的是与大数据相关的美国政治、经济、社会和文化的演进,从民主和国家战略的层面细解大数据的影响力。美国是全书的主体,但又处处反观中国当下的现实。内容非常值得我们身处改革开放前沿的政府工作者深思。它让我们更加深刻地理解了汪洋书记提出的“坚持用数据说话、用数据改进管理、用数据推动创新”的深刻内涵和殷切期望。我们只有重视数据,加强对数据的收集、分析和使用,才能更好地应对正在到来的数据革命的挑战。那么,作为与数据打交道、用数据说话的前线统计工作者,如何应对大数据时代的种种挑战?
对比《大数据》,结合平时工作和学习的实际情况,我认为最少应该认真思考和解决好三个问题:
一、提供什么样的数据?
在中国,统计部门提供的数据,是各级政府部门和广大人民群众了解国家社会经济发展和人民生活状况主要渠道。只有真实可靠统计数据,才能使政府决策有的放矢,人民了解国家经济与人民生活的
真实状况。如果统计数据虚假不实,就会误导政府和人民,让政府失信于人民。因此,我们一定把握好数据的生命线—质量关,确保给国家和人民提供准确、真实、可靠、无误的数据。
二、如何高效有序地收集数据?
面对信息大爆炸时代海量数据,必须充分利用高科技手段,高效有序地收集整理各种数据,以满足政府和人民群众越来越广泛的信息需求。为此,我们需要建立完善数据收集网络,包括部门内部的纵向数据收集网络和部门之间的横向数据收集网络,通过这种纵横结合的网络数据收集系统,针对特定主题,持续不断地收集相关数据,为大数据发展提供基础。需要运用互联网、电子计算机等现代技术手段,加快数据收集、加工数据的速度,确保政府和人民及时得到所需数据。
三、如何加强数据分析利用能力?
收集数据的目的是为分析利用数据。通过数据分析挖掘数据背后隐含的经济规律及有利于提高效率、改进工作的因素,提高政府管理、决策和人民生活水平,实现“用数据改进管理”。因此,作为统计人,不仅要做好数据收集的及时有效和真实正确,更重要的是要善于分析利用数据,写好专业分析报告,发现问题、支撑决策、评估绩效的目的。
此外我们还可以看到不少政府机构或者其他一些组织也在开始大数据解决他们遇到的一些问题。在本书的最后一章,作者告诉了我们大数据可能带来的坏处。如:通过大数据可能我们的个人各种信息、隐私会很容易地被大数据的拥有者找到,这些信息,可能被政府用来
监管我们等;通过大数据可以预测可能发生的事,或者预测我们人个人本书即将做的行为,书中有个例子:警察通过大数据分析得出一个人即将可能犯罪,并把它逮捕了,但事实上这个人现在并没有犯罪。也许这就限制、约束了我们个人的自由。
看完这本书,颠覆了自己之前的一些想法: 以前我们认为错误的数据是没有用,我们需要保证统计的数据的准确性,但是在大数据中,错误的数据也是有用的,它和其他所有相对正确的数据一起构成了整体,也就算不了什么了。我们同样可以从这些数据中得出比较正确的预测和分析。 google利用人们搜索的关键字来预测和判断某个地区是否发生流感,google通过分析这个地区的人们搜索和流感有关的词的数量等来分析得出。 google 从互联网抓取数以亿记的各种语 ……此处隐藏5784个字……的包容会带给我们更多好处。(小微金融创新,也可借鉴此思想,然后做好对数据收集与存储的支撑成为首要完成的事务,然后是对数据的正确运用是重点)
我们可以在大量数据对计算机其他领域进步的重要性上看到类似的变化。我们都知道,如 摩尔定律所预测的,过去一段时间里计算机的数据处理能力得到了很大的提高。摩尔定律认 为,每块芯片上晶体管的数量每两年就会翻一倍。这使得电脑运行更快速了,存储空间更大 了。大家没有意识到的是,驱动各类系统的算法也进步了——美国总统科技顾问委员会的报告显示,在很多领域这些算法带来的进步还要胜过芯片的进步。然而,社会从“大数据”中所能得到的,并非来自运行更快的芯片或更好的算法,而是更多的数据。(数据本身的价值,及数据的价值的体现)
容忍错误带来的是更多数据吞吐(大数据),容忍风险带来的大量业务的涌现(小微金融) 大量业务的涌现带来的收益需要大于其风险带来的损失,最好办法就是从他处大量收集这些数据,并容忍这些数据存在错误,再基于大数据分析(同业数据收集,依托互联网中搜索等进行收集,阿里可以根据淘宝进行收集)
一致性多样性
hadoop的输出结果没有关系型数据库输出结果那么精确,它不能用于卫星发射、开具银行 账户明细这种精确度要求很高的任务。但是对于不要求极端精确的任务,它就比其他系统运行得快很多,比如说把顾客分群,然后分别进行不同的营销活动。 信用卡公司visa使用hadoop,能够将处理两年内730亿单交易所需的时间,从一个月缩减 至仅仅13分钟。这样大规模处理时间上的缩减足以变革商业了。也许hadoop不适合正规记账,但是当可以允许少量错误的时候它就非常实用。
zestfinance,一个由谷歌前任首席信息官道格拉斯·梅里尔创立的公司,用自己的经验再次 验证了“宽容错误会给我们带来更多价值”这一观点。这家公司帮助决策者判断是否应该向某些拥有不良信用记录的人提供小额短期贷款。传统的信用评分机制关注少量突出的事件,比如一次还款的延迟,而zestfinance则分析了大量不那么突出的事件。2014年,让zestfinance引以为豪的就是,它的贷款拖欠率比行业平均水平要低三分之一左右。唯一的
得胜之道还是拥抱混杂。
梅里尔说:“有趣的是,对我们而言,基本没有任何一个人的信息是齐备的,事实上,总有 大量的数据缺失。”由zestfinance创建的用来记录客户信息的矩阵是难以想象得稀疏,里面充满了数据的空洞,但zestfinance在这些支离破碎的数据中如鱼得水。举个例子,有10%的客户属性信息显示“已经死亡”,但是依然可以从他们身上收回贷款。梅里尔一脸坏笑地说:“显然,没有人会企盼僵尸复活并且主动还贷。但是我们的数据显示,放贷给僵尸是一项不错的生意。”
所以有时候,通过代理取得数据信息比自己去操作烦琐的程序要便宜得多。同时还有另一 个征信机构出售“支付能力指数”和“可支配支出指数”,这些指数是用来预测一个人的支付能力的。
数据化
必须收集所有信息(包括被否掉的信息和被忽略的信息),所有跟行业接触的客户的信息,甚至没有需求的客户信息。所以可以分四步来走,第一步所有达成交易客户的全面信息(*只要能收集到能接触到的),第二步收集所有跟公司有接触的客户的全面信息,第三步收集跟整个行业有接触的客户的全面信息,第四步所有跟客户相关的人或法人的全面信息,第五步所有人的全面信息。
一切给冯·安这位家里经营糖果厂的危地马拉人带来了相当高的知名度,使他能够在取得 博士学位后进入卡内基梅隆大学工作,教授计算机科学;也使他在27岁时获得了50万美元的麦克阿瑟基金会“天才奖”。但是,当他意识到每天有这么多人要浪费10秒钟的时间输入这堆恼人的字母,而随后大量的信息被随意地丢弃时,他并没有感到自己很聪明。
于是,他开始寻找能使人的计算能力得到更有效利用的方法。他想到了一个继任者,恰如 其分地将其命名为recaptcha。和原有随机字母输入不同,人们需要从计算机光学字符识别程序无法识别的文本扫描项目中读出两个单词并输入。其中一个单词其他用户也识别过,从而可以从该用户的输入中判断注册者是人;另一个单词则是有待辨识和解疑的新词。为了保证准确度,系统会将同一个模糊单词发给五个不同的人,直到他们都输入正确后才确定这个单词是对的。在这里,数据的主要用途是证明用户是人,但它也有第二个目的:破译数字化文本中不清楚的单词。recaptcha的作用得到了认可,2014年谷歌收购了冯·安的公司,并将这一技术用于图书扫描项目。
我们所处的时代之所以与众不同,是因为数据的收集不再存在固有的局限性。技术已经发 展到一定程度,大量信息可以被廉价地捕捉和记录。数据经常会得到被动地收集,人们无须投入太多精力甚至不需要认识这些数据。而且,由于存储成本的大幅下降,保存数据比丢弃数据更加容易。这使得以较低成本获得更多数据的可能性比以往任何时候都大。
大数据创新可以有两个方向:
1、更适合于已有大量数据在手的进一步数据价值挖掘。
2、或打造向大数据收集方向靠拢的模式,建立一种好的收集机制。
数据创新1:数据的再利用
数据创新2:重组数据
数据创新3:可扩展数据 :可扩展数据
数据创新4:数据的折旧值
数据创新5:数据废气
数据创新6:开放数据
这两家公司的不同做法很能说明问题。微软只看到了拼写检查作为文字处理这一个目的的 价值,而谷歌却理解了其更深层次的价值。不仅利用错别字开发了世界上最好、最新式的拼写检查器来提高搜索质量,而且将其应用于许多其他服务中,如搜索的“自动完成”功能、gmail、谷歌文档甚至翻译系统。
容错,包容能带来新的价值
一位谷歌的员工说:“我们喜欢从大的‘噪音’数据集中吸取教训。”
很多企业都开始设计他们的系统,以这种方式收集和使用信息。在facebook的早期,数据 科学家们研究了数据废气的丰富信息,发现人们会采取某种行动(如回帖、点击图标等)的最重要的预测指标就是他们看到了周围的朋友也在这么做。紧接着,facebook重新设计了它的系统,使每个用户的活动变得可见并广播出去,这为网站的良性循环做出了新的贡献。逐渐地,这个想法从互联网行业传播至可以收集用户反馈的任何公司。
数据本身、技能与思维
数据来源,信用卡 匿名信息
手/网游公司。。。
大数据只是科技发展的一个阶段,人类卓越的才华才是人类最大的优势(相比较于机器),是我们行进道路上可能用到或可以说必定会用到工具,工具就需要擅用的才华与技巧。 如果存在超越或近似于人类才华的能力,那它就具备人类同样的智慧。
默认推荐其他范文:常来福《大数据》读后感9.03
大数据时代读后感
《大数据时代》读后感
大数据时代读后感
大数据时代读后感